Category: Resource Type

California Sustainable Groundwater Management Act (SGMA)

The historic passage of SGMA in 2014 set forth a statewide framework to help protect groundwater resources over the long-term. SGMA is comprised from a three-bill legislative package, including AB 1739 (Dickinson), SB 1168 (Pavley), and SB 1319 (Pavley), and subsequent statewide Regulations. In signing SGMA, then-Governor Jerry Brown emphasized that “groundwater management in California is best accomplished locally.”

SGMA requires local agencies to form groundwater sustainability agencies (GSAs) for the high and medium priority basins. GSAs develop and implement groundwater sustainability plans (GSPs) to avoid undesirable results and mitigate overdraft within 20 years.

DWR serves two roles to support local SGMA implementation:

1) Regulatory oversight through the evaluation and assessment of GSPs

2) Providing ongoing assistance to locals through the development of:

Best management practices and guidance
Planning assistance
Technical assistance
Financial assistance

Recharge site assessment through the integration of surface geophysics and cone penetrometer testing

Paper Abstract:

The ability to identify, at potential managed aquifer recharge sites, the presence of connected pathways of hydraulically conductive sediments from the ground surface to the water table could help minimize costs and risks associated with recharge operations. A spatially dense dataset had previously been acquired in an almond [Prunus dulcis (Mill.) D.A. Webb] grove in Tulare, CA, using tTEM, a towed transient electromagnetic (tTEM) geophysical method. In order to interpret reliable information about sediment type from the tTEM data, a transform from the tTEM-derived property, electrical resistivity, to sediment type is required. The uncertainty associated with derived models of sediment type can be significantly reduced if a site- and dataset-specific transform is used. Cone penetrometer testing (CPT) was conducted at five locations, strategically selected based on a review of the tTEM data. Co-located measurements of sediment type, derived from the CPT, and electrical resistivity, derived from the tTEM data, were used to create a resistivity-to-sediment-type transform, with sediment type classified as either coarse-grain-dominated (sand and gravel) or fine-grain-dominated (silt and clay) material. The transform captured the uncertainty associated with variable water salinity and content, the resolution of the tTEM data, and other components of the tTEM measurement workflow. Using this transform, models of sediment type were generated for the unsaturated zone at the site. Within these models are features, which we interpret as potential recharge pathways, corresponding to high fractions of coarse-grain-dominated material amongst regions of fine-grain-dominated material. The workflow developed at this site can provide a framework for using tTEM and CPT for recharge site assessment.

Soil Agricultural Groundwater Banking Index

The Soil Agricultural Groundwater Banking Index (SAGBI) is a suitability index for groundwater recharge on agricultural land. The SAGBI is based on five major factors that are critical to successful agricultural groundwater banking: deep percolation, root zone residence time, topography, chemical limitations, and soil surface condition.

California DWR Airborne Electromagnetic Surveys

The Department of Water Resources is conducting airborne electromagnetic (AEM) surveys in California’s high- and medium-priority groundwater basins, where data collection is feasible, to assist local water managers as they implement the Sustainable Groundwater Management Act (SGMA) to manage groundwater for long term sustainability.

The AEM project provides state and federal agencies, groundwater sustainability agencies (GSAs), stakeholders, and the public with basin-specific and cross-basin geophysical data, tools, and analyses.

The surveys are funded by voter-approved Proposition 68, Senate Bill 5, and from the general fund. More information can be found in the AEM Proposition 68 Fact Sheet.

During an AEM survey, a helicopter tows electronic equipment that sends signals into the ground which bounce back. The process has been compared to taking an MRI of the ground’s subsurface. The data collected is used to create continuous images that are interpreted for underground geology.

The resulting information will provide a standardized, statewide dataset that improves the understanding of aquifer structures. It can also help with the development or refinement of hydrogeologic conceptual models and can help identify areas for recharging groundwater.

Flood-MAR Research and Data Development Plan

This Flood-MAR Research and Data Development Plan (R&DD Plan) presents the work of the Flood-MAR Research Advisory Committee (RAC), a multidisciplinary group of subject matter experts across 13 research themes. The RAC was tasked to identify the research, data, guidance, and tools necessary to support and expand the implementation of Flood-MAR projects. Well-formulated Flood-MAR projects can benefit Californians and the environment through improved water supply reliability, flood-risk reduction, drought preparedness, aquifer replenishment, ecosystem enhancement, subsidence mitigation, water quality improvement, working landscape preservation and stewardship, climate change adaptation, recreation, and aesthetics

Flood-MAR White Paper

The California Department of Water Resources (DWR) prepared this white paper to explore opportunities to use flood water for managed aquifer recharge (Flood-MAR) because DWR recognizes the need to rehabilitate and modernize water and flood infrastructure in California. Large-scale implementation of Flood-MAR can fundamentally change how flood and groundwater management are integrated by using flood water resulting from, or in anticipation of, rainfall or snowmelt for groundwater recharge on agricultural lands and working landscapes, including but not limited to refuges, floodplains, and flood bypasses.